首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3844篇
  免费   850篇
  国内免费   37篇
电工技术   21篇
综合类   90篇
化学工业   2888篇
金属工艺   22篇
机械仪表   47篇
建筑科学   87篇
矿业工程   13篇
能源动力   313篇
轻工业   218篇
水利工程   2篇
石油天然气   55篇
武器工业   1篇
无线电   227篇
一般工业技术   655篇
冶金工业   32篇
原子能技术   30篇
自动化技术   30篇
  2024年   33篇
  2023年   146篇
  2022年   94篇
  2021年   289篇
  2020年   253篇
  2019年   225篇
  2018年   234篇
  2017年   238篇
  2016年   200篇
  2015年   230篇
  2014年   245篇
  2013年   212篇
  2012年   262篇
  2011年   216篇
  2010年   191篇
  2009年   164篇
  2008年   181篇
  2007年   164篇
  2006年   195篇
  2005年   169篇
  2004年   138篇
  2003年   137篇
  2002年   122篇
  2001年   69篇
  2000年   42篇
  1999年   55篇
  1998年   41篇
  1997年   39篇
  1996年   22篇
  1995年   25篇
  1994年   21篇
  1993年   18篇
  1992年   11篇
  1991年   7篇
  1990年   7篇
  1989年   4篇
  1988年   5篇
  1987年   4篇
  1986年   2篇
  1985年   4篇
  1984年   5篇
  1983年   1篇
  1982年   4篇
  1981年   1篇
  1979年   1篇
  1951年   5篇
排序方式: 共有4731条查询结果,搜索用时 0 毫秒
101.
102.
Inter-diffusion between vanadium and palladium coating layers in vanadium-based hydrogen separation membranes is investigated by using a computational approach based on first-principles calculations and semi-empirical atomistic simulations, paying attention to the surface stability and the prevention of the degradation of hydrogen permeability. It is found that the governing mechanism of the inter-diffusion is the grain boundary diffusion, and therefore a diffusion barrier based on the grain boundary segregation of impurities can be an efficient way to inhibit the inter-diffusion that causes the degradation. An interesting aspect in previous experimental works that showed a good resistance to the inter-diffusion by an addition of a trace amount of yttrium is discussed from the view point of the grain boundary segregation. An experiment that proves the validity of the present alloy design scheme (inhibition of inter-diffusion using grain boundary segregation) is carried out, and a process to maximize the sustainability of the membrane is also proposed.  相似文献   
103.
Self‐assembling peptide amphiphiles (PAs) can form hierarchically ordered membranes when brought in contact with aqueous polyelectrolytes of the opposite charge by rapidly creating a diffusion barrier composed of filamentous nanostructures parallel to the plane of the incipient membrane. Following this event, osmotic forces and charge complexation template nanofiber growth perpendicular to the plane of the membrane in a dynamic self‐assembly process. In this work, we show that this hierarchical structure requires massive interfacial aggregation of PA molecules, suggesting the importance of rapid diffusion barrier formation. Strong PA aggregation is induced here through the use of heparin‐binding PAs with heparin and also with polyelectrolytes of varying charge density. Small angle X‐ray scattering shows that in the case of weak PA‐polyelectrolyte interaction, membranes formed display a cubic phase ordering on the nanoscale that likely results from clusters of PA nanostructures surrounded by polyelectrolyte chains.  相似文献   
104.
The selective separation of carbon dioxide (CO2) from a wet gaseous mixture of CO2/H2 through facilitated transport membranes containing immobilized aqueous solutions of monoethanolamine (MEA), diethanolamine (DEA), ethylenediamine (EDA) and monoprotonated ethylenediamine (EDAH+) and their blends was experimentally investigated. The effect of CO2 partial pressure, amine concentration, feed side pressure and amine species on the CO2 and H2 permeances were studied. The CO2 permeability through amine solution membranes decreased with increasing CO2 feed partial pressure but the H2 permeance was almost independent of the H2 partial pressure. A comparison of experimental results showed that single or blended amines with low viscosity and a moderate equilibrium constant, i.e., large forward and reverse reaction rate of CO2‐amine, are suitable for effective separation of CO2. The permeability of CO2 generally increased with an increase in amine concentration, although this increase may be compromised by the salting out effect and decrease in diffusivities of species. The results obtained indicated that CO2 permeance across a variety of amines are in the order of DEA (2 M) > MD (2 M) > MD (1 M) > MEA (2 M) > MEA (4 M) > MD (4 M) > DEA (1 M) > DEA (4 M) > MEA (1 M) for various concentrations of MEA + DEA blend and are in the order of EDAH+ (2 M) > DEA (2 M) > MH (2 M) > DH (2 M) > ED (2 M) > EDA (2 M) > MEA (2 M) for various blends of amine.  相似文献   
105.
Polyacrylonitrile (PAN) and polyester (PET) braided hollow tube that used as a special reinforcement are braided from their filaments via two‐dimensional weaving techniques. PAN braided tube reinforced homogeneous PAN hollow fiber membranes and PET braided tube reinforced heterogeneous PAN hollow fiber membranes are prepared by concentric circles squeezed‐coated spinning method. As for PAN hollow fiber membrane, the effects of PAN concentration on the performance of the prepared hollow fiber membranes are investigated in terms of pure water flux, protein rejection, mechanical strength, and morphology observations by a scanning electron microscope (SEM). The interfacial bonding state of the braided tube reinforced PAN hollow fiber membranes is studied by constant speed stretching method. Results show that the breaking strength of two‐dimensional braided tube reinforced PAN hollow fiber membranes is higher than 80 MPa. The structure of separation surface is similar to the structure of an asymmetric membrane. With the increase of polymer concentration, the membrane flux decreases while the retention rate of BSA increase. The membrane porosity and maximum pore size have the same decreasing tendency as the increase of PAN concentration. The results also show that the interfacial bonding state of the PAN two‐dimensional braided tube reinforced homogeneous PAN hollow fiber membranes is better than that of the PET two‐dimensional braided tube reinforced heterogeneous PAN hollow fiber membranes. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41795.  相似文献   
106.
In this study, Nafion® NR 40 beads with polyethylene oxide (PEO) are fabricated into a nanofiber membrane using electrospinning. In particular, Nafion® beads in non‐toxic mixed solvent (EtOH and H2O) were blended with the carrier polymer PEO, which is the minor component in the solution responsible for the solution spinnability. The highest content of Nafion® in the nanofiber is 98.04%. To investigate the factors influencing the nanofiber diameter during electrospinning, an orthogonal design method was adopted. These factors include the carrier polymer content, distance between the syringe needle and roller collector, flow rate of the electrospinning solution, and the roller rotation speed. After obtaining the significant factors and optimal test level, an additional optimization experiment is conducted under the best conditions. The resulting nanofibers have a diameter of ~150 nm. Moreover, the obtained Nafion® nanofiber membrane has strong potential for applications in polymer electrolyte membrane fuel cells (PEMFC), the chlor‐alkali industry, catalysts, and metal ion removal. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41755.  相似文献   
107.
New composite polyvinyl alcohol (PVA)/polypropylene (PP) membranes were prepared by combining both solution electrospinning and melt electrospinning methods. Self‐designed and made needleless melt electrospinning device was used to fabricate PP membranes which acted as the support layer. PVA membrane on the surface was fabricated via solution electrospinning. The electrospun PVA/PP composite membranes were characterized by the pore size distribution, pure water flux, and rejection ratio, then compared with general composite membranes. Characterizations revealed that the fiber diameter of solution electrospun PVA membrane and melt electrospun PP membrane were 0.171 ± 0.027 and 2.24 ± 0.33 μm, respectively, and the average pore size was 0.832 μm and 27.29 μm, which was much smaller than the nonwoven membrane. The rejection ratio to the 500 nm particles of the PVA/PP composite membrane could reach more than 96%, which was much larger than that of the PVA/non‐woven substrate of 90%, and the melt electrospun PP membrane of 80%, and still maintained high permeate flux of 32,346 L/m2h under the pressure of 0.24 bar. This approach of compositing the solution electrospun membranes and melt electrospun membranes could be useful in designing novel microfiltration membrane owning both higher flux and higher rejection ratio. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41601.  相似文献   
108.
Polyether‐block‐amide (Pebax)/graphene oxide (GO) mixed‐matrix membranes (MMMs) were prepared with a solution casting method, and their gas‐separation performance and mechanical properties were investigated. Compared with the pristine Pebax membrane, the crystallinity of the Pebax/GO MMMs showed a little increase. The incorporation of GO induced an increase in the elastic modulus, whereas the strain at break and tensile strength decreased. The apparent activation energies (Ep) of CO2, N2, H2, and CH4 permeation through the Pebax/GO MMMs increased because of the greater difficulty of polymer chain rotation. The Ep value of CO2 changed from 16.5 kJ/mol of the pristine Pebax to 23.7 kJ/mol of the Pebax/GO MMMs with 3.85 vol % GO. Because of the impermeable nature of GO, the gas permeabilities of the Pebax/GO MMMs decreased remarkably with increasing GO content, in particular for the larger gases. The CO2 permeability of the Pebax/GO MMMs with 3.85 vol % GO decreased by about 70% of that of the pristine Pebax membrane. Rather than the Maxwell model, the permeation properties of the Pebax/GO MMMs could be described successfully with the Lape model, which considered the influence of the geometrical shape and arrangement pattern of GO on the gas transport. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42624.  相似文献   
109.
A series of sulfonated copolyimides (SPIs) with hydrophilic segment length of 20–60 based on 4,4′‐sulfide‐bis(naphthalic anhydride) (SBNA) have been successfully synthesized to improve hydrolytic stability and proton conductivity. The SPI membranes were cast from their m‐cresol solutions, and they were characterized by determining the water uptake, water swelling ratio, mechanical properties, hydrolytic stability, oxidative stability, and proton conductivity. It was found that the water uptake of SPI membranes was low and decreased as the hydrophilic segment length increased, which led to good dimensional stability. In addition, the SPI membranes with low ion‐exchange capacity (IEC) value displayed excellent hydrolytic stability and retained good mechanical properties even after harsh hydrolysis testing, in which the block SPI with hydrophilic segment length of 40 had the best hydrolytic stability, while those with high IEC value showed an apparent decrease. All of the block SPI membranes show better conductivity than the random ones at the temperature range from 30 to 70°C. Interestingly, the proton conductivities of random SPI membranes were higher than that of corresponding block ones at 90°C. The block SPI with hydrophilic segment length of 40 gave the highest proton conductivity as the temperature increased among the block SPIs. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41501.  相似文献   
110.
Dual‐layer acetylated methyl cellulose (AMC) hollow fiber membranes were prepared by coupling the thermally induced phase separation (TIPS) and non‐solvent induced phase separation (NIPS) methods through a co‐extrusion process. The TIPS layer was optimized by investigating the effects of coagulant composition on morphology and tensile strength. The solvent in the aqueous coagulation bath caused both delayed liquid–liquid demixing and decreased polymer concentration at the membrane surface, leading to porous structure. The addition of an additive (triethylene glycol, (TEG)) to the NIPS solution resolved the adhesion instability problem of the TIPS and NIPS layers, which occurred due to the different phase separation rates. The dual‐layer AMC membrane showed good mechanical strength and performance. Comparison of the fouling resistance of the AMC membranes with dual‐layer polyvinylidene fluoride (PVDF) hollow fiber membranes fabricated with the same method revealed less fouling of the AMC than the PVDF hollow fiber membrane. This study demonstrated that a dual‐layer AMC membrane with good mechanical strength, performance, and fouling resistance can be successfully fabricated by a one‐step process of TIPS and NIPS. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42715.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号